When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scanning electron microscope - Wikipedia

    en.wikipedia.org/wiki/Scanning_electron_microscope

    An account of the early history of scanning electron microscopy has been presented by McMullan. [2] [3] Although Max Knoll produced a photo with a 50 mm object-field-width showing channeling contrast by the use of an electron beam scanner, [4] it was Manfred von Ardenne who in 1937 invented [5] a microscope with high resolution by scanning a very small raster with a demagnified and finely ...

  3. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...

  4. Electron-beam lithography - Wikipedia

    en.wikipedia.org/wiki/Electron-beam_lithography

    An example of Electron beam lithograph setup. Electron-beam lithography (often abbreviated as e-beam lithography or EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). [1]

  5. Everhart–Thornley detector - Wikipedia

    en.wikipedia.org/wiki/Everhart–Thornley_detector

    The E-T secondary electron detector can be used in the SEM's back-scattered electron mode by either turning off the Faraday cage or by applying a negative voltage to the Faraday cage. However, better back-scattered electron images come from dedicated BSE detectors rather than from using the E–T detector as a BSE detector.

  6. Scanning tunneling spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_tunneling...

    Using this method, the local electronic structure of semiconductors in the band gap can be probed. [4] There are two ways to record I-V curves in the manner described above. In constant-spacing scanning tunneling spectroscopy (CS-STS), the tip stops scanning at the desired location to obtain an I-V curve.

  7. 4D scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/4D_scanning_transmission...

    4D scanning transmission electron microscopy (4D STEM) is a subset of scanning transmission electron microscopy (STEM) which utilizes a pixelated electron detector to capture a convergent beam electron diffraction (CBED) pattern at each scan location. This technique captures a 2 dimensional reciprocal space image associated with each scan point ...

  8. Detectors for transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Detectors_for_transmission...

    For electron microscopes, film typically consisted of a gelatin and silver halide emulsion layer on a plastic support base. [2] The silver halide would be converted to silver upon exposure to the electron beam, and the film could then be chemically developed to form an image, which could be digitized for analysis using a film scanner. [2]

  9. Electron beam-induced current - Wikipedia

    en.wikipedia.org/wiki/Electron_beam-induced_current

    Electron-beam-induced current (EBIC) is a semiconductor analysis technique performed in a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM). It is most commonly used to identify buried junctions or defects in semiconductors, or to examine minority carrier properties.