Search results
Results From The WOW.Com Content Network
1. Strict inequality between two numbers; means and is read as "less than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2.
There are several different notations used to represent different kinds of inequalities: The notation a < b means that a is less than b. The notation a > b means that a is greater than b. In either case, a is not equal to b. These relations are known as strict inequalities, [1] meaning that a is strictly less than or strictly greater than b ...
Another type of equation is inequality. Inequalities are used to show that one side of the equation is greater, or less, than the other. The symbols used for this are: > where > represents 'greater than', and < where < represents 'less than'. Just like standard equality equations, numbers can be added, subtracted, multiplied or divided.
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.
The greater-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the right, >, has been found in documents dated as far back as 1631. [1]
A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to; A linear inequality looks exactly like a linear equation, with the inequality sign replacing the equality sign.
For instance, in number theory, a large number is asymptotically almost surely composite, by the prime number theorem; and in random graph theory, the statement "(,) is connected" (where (,) denotes the graphs on vertices with edge probability ) is true a.a.s. when, for some >
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.