When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The K-nearest neighbor classification performance can often be significantly improved through metric learning. Popular algorithms are neighbourhood components analysis and large margin nearest neighbor. Supervised metric learning algorithms use the label information to learn a new metric or pseudo-metric.

  3. Evelyn Fix - Wikipedia

    en.wikipedia.org/wiki/Evelyn_Fix

    In 1951 Fix and Joseph Hodges, Jr. published their groundbreaking paper "Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties," which defined the nearest neighbor rule, an important method that would go on to become a key piece of machine learning technologies, the k-Nearest Neighbor (k-NN) algorithm .

  4. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbours .

  5. Nearest neighbor graph - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_graph

    NNGs for points in the plane as well as in multidimensional spaces find applications, e.g., in data compression, motion planning, and facilities location. In statistical analysis, the nearest-neighbor chain algorithm based on following paths in this graph can be used to find hierarchical clusterings quickly.

  6. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    For instance, a data sample might be a natural language sentence, and the output could be an annotated parse tree. Training a classifier consists of showing many instances of ground truth sample-output pairs. After training, the SkNN model is able to predict the corresponding output for new, unseen sample instances; that is, given a natural ...

  7. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    Descriptive statistics Nonparametric statistics Quality control Survival analysis Data processing Base stat. [Note 2] Normality tests [Note 3] CTA [Note 4] Nonparametric comparison, ANOVA: Cluster analysis Discriminant analysis BDP [Note 5] Ext. [Note 6]

  8. KNN - Wikipedia

    en.wikipedia.org/wiki/KNN

    KNN may refer to: k-nearest neighbors algorithm (k-NN), a method for classifying objects; Nearest neighbor graph (k-NNG), a graph connecting each point to its k nearest neighbors; Kabataan News Network, a Philippine television show made by teens; Khanna railway station, in Khanna, Punjab, India (by Indian Railways code)

  9. Spatial weight matrix - Wikipedia

    en.wikipedia.org/wiki/Spatial_weight_matrix

    The concept of a spatial weight is used in spatial analysis to describe neighbor relations between regions on a map. [1] If location i {\displaystyle i} is a neighbor of location j {\displaystyle j} then w i j ≠ 0 {\displaystyle w_{ij}\neq 0} otherwise w i j = 0 {\displaystyle w_{ij}=0} .

  1. Related searches how to interpret knn model in statistics analysis tool albion pdf format

    k nn regressionk n regression algorithm