Ad
related to: polynomial division calculator with remainder
Search results
Results From The WOW.Com Content Network
Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R,
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product by of a polynomial in of degree less than the degree of .
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
The primitive pseudo-remainder sequence consists in taking for α the content of the numerator. Thus all the r i are primitive polynomials. The primitive pseudo-remainder sequence is the pseudo-remainder sequence, which generates the smallest coefficients.
As a consequence of the polynomial remainder theorem, the entries in the third row are the coefficients of the second-degree polynomial, the quotient of () on division by . The remainder is 5 . This makes Horner's method useful for polynomial long division .