Search results
Results From The WOW.Com Content Network
For the code to function as before, a decryption function is added to the code. When the code is executed, this function reads the payload and decrypts it before executing it in turn. Encryption alone is not polymorphism. To gain polymorphic behavior, the encryptor/decryptor pair is mutated with each copy of the code.
Impredicative polymorphism (also called first-class polymorphism) is the most powerful form of parametric polymorphism. [1]: 340 In formal logic, a definition is said to be impredicative if it is self-referential; in type theory, it refers to the ability for a type to be in the domain of a quantifier it contains. This allows the instantiation ...
In type-based program analysis polymorphic recursion is often essential in gaining high precision of the analysis. Notable examples of systems employing polymorphic recursion include Dussart, Henglein and Mossin's binding-time analysis [2] and the Tofte–Talpin region-based memory management system. [3]
We then iterate over one of the lists (SHAPE), allowing elements of the other (SURFACE) to visit each of them in turn. In the example code above, SURFACE objects are visiting SHAPE objects. The code makes a polymorphic call on {SURFACE}.draw indirectly by way of the `drawing_agent', which is the first call (dispatch) of the double-dispatch pattern.
Multiple dispatch or multimethods is a feature of some programming languages in which a function or method can be dynamically dispatched based on the run-time (dynamic) type or, in the more general case, some other attribute of more than one of its arguments. [1]
Polymorphism can be distinguished by when the implementation is selected: statically (at compile time) or dynamically (at run time, typically via a virtual function). This is known respectively as static dispatch and dynamic dispatch, and the corresponding forms of polymorphism are accordingly called static polymorphism and dynamic polymorphism.
For example, in the GHC standard library, the class IArray expresses a general immutable array interface. In this class, the type class constraint IArray a e means that a is an array type that contains elements of type e. (This restriction on polymorphism is used to implement unboxed array types, for example.)
The following example demonstrates how to describe types that can be compared to each other and use this as typing information in polymorphic functions. The Test.min function uses simple bounded quantification and does not ensure the objects are mutually comparable, in contrast with the Test.fMin function which uses F-bounded quantification.