Search results
Results From The WOW.Com Content Network
To compute the greatest distance D BL at which an observer B can see the top of an object L above the horizon, simply add the distances to the horizon from each of the two points: D BL = D B + D L For example, for an observer B with a height of h B =1.70 m standing on the ground, the horizon is D B =4.65 km away.
Assuming a perfect sphere with no terrain irregularity, the distance to the horizon from a high altitude transmitter (i.e., line of sight) can readily be calculated. Let R be the radius of the Earth and h be the altitude of a telecommunication station. The line of sight distance d of this station is given by the Pythagorean theorem;
The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...
A sextant. A sextant is a doubly reflecting navigation instrument that measures the angular distance between two visible objects. The primary use of a sextant is to measure the angle between an astronomical object and the horizon for the purposes of celestial navigation.
In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe , giving a distance that does not change in time except due to local factors, such as the motion of a ...
Azimuth is measured eastward from the north point (sometimes from the south point) of the horizon; altitude is the angle above the horizon. The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.
By subtracting this from 90°, he would find that the zenith distance is 90°, which is his latitude. Observer C at the same time is at latitude 20°N on the same meridian, i.e. on the same longitude as Observer A. His measured altitude would be 70°, and subtracting this from 90° gives a 20° zenith distance, which in turn is his latitude. In ...
As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.