Search results
Results From The WOW.Com Content Network
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
The formula for calculating the ballistic coefficient for small and large arms projectiles only is as follows: = [2] where: C b,projectile, ballistic coefficient as used in point mass trajectory from the Siacci method (less than 20 degrees).
is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .
General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.
The G7 drag curve model prediction method (recommended by some manufacturers for very-low-drag shaped rifle bullets) when using a G7 ballistic coefficient (BC) of 0.377 yields very similar results in the supersonic flight regime compared to the Doppler radar test derived drag coefficients (C d) prediction method. At 1,500 m (1,640 yd) range the ...
Aerodynamics are everything. Improve yours. For premium support please call: 800-290-4726 more ways to reach us
In supersonic flow regimes, wave drag is commonly separated into two components, supersonic lift-dependent wave drag and supersonic volume-dependent wave drag. The closed form solution for the minimum wave drag of a body of revolution with a fixed length was found by Sears and Haack, and is known as the Sears-Haack Distribution .
The downward force of gravity (F g) equals the restraining force of drag (F d) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).