When.com Web Search

  1. Ad

    related to: direct graph of an ellipse calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    Finally they are geodesic ellipses and hyperbolas defined using two adjacent umbilical points (Hilbert & Cohn-Vossen 1952, p. 188). For example, the lines of constant β in Fig. 17 can be generated with the familiar string construction for ellipses with the ends of the string pinned to the two umbilical points.

  4. Director circle - Wikipedia

    en.wikipedia.org/wiki/Director_circle

    More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.

  5. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [4]

  6. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F 1 {\displaystyle F_{1}} and F 2 {\displaystyle F_{2}} are generally taken to be fixed at − a {\displaystyle -a} and + a {\displaystyle +a} , respectively, on the x ...

  7. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    In the case of an ellipse ⁠ x 2 / a 2 ⁠ + ⁠ y 2 / b 2 ⁠ = 1 one can adopt the idea for the orthoptic for the quadratic equation + = Now, as in the case of a parabola, the quadratic equation has to be solved and the two solutions m 1 , m 2 must be inserted into the equation tan 2 ⁡ α = ( m 1 − m 2 1 + m 1 m 2 ) 2 . {\displaystyle ...

  8. Elliptic cylindrical coordinates - Wikipedia

    en.wikipedia.org/wiki/Elliptic_cylindrical...

    The foci of the ellipse and hyperbola lie at x = ±2.0. Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system in the perpendicular -direction. Hence, the coordinate surfaces are prisms of confocal ellipses and hyperbolae.

  9. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Any ellipsoid is the image of the unit sphere under some affine transformation, and any plane is the image of some other plane under the same transformation. So, because affine transformations map circles to ellipses, the intersection of a plane with an ellipsoid is an ellipse or a single point, or is empty. [8] Obviously, spheroids contain ...