When.com Web Search

  1. Ads

    related to: matrix calculator with steps

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. [ 1 ]

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Online Matrix Calculator; Wolfram Alpha Matrix Decomposition Computation » LU and QR Decomposition; Springer Encyclopaedia of Mathematics » Matrix factorization; GraphLab GraphLab collaborative filtering library, large scale parallel implementation of matrix decomposition methods (in C++) for multicore.

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, in the following sequence of row operations (where two elementary operations on different rows are done at the first and third steps), the third and fourth matrices are the ones in row echelon form, and the final matrix is the unique reduced row echelon form.

  6. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    ⁠ The second step is to compute the SVD of the bidiagonal matrix. This step can only be done with an iterative method (as with eigenvalue algorithms). However, in practice it suffices to compute the SVD up to a certain precision, like the machine epsilon.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  8. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  9. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.