When.com Web Search

  1. Ad

    related to: how to measure similarity in pictures in word problems

Search results

  1. Results From The WOW.Com Content Network
  2. Structural similarity index measure - Wikipedia

    en.wikipedia.org/wiki/Structural_similarity...

    The structural similarity index measure (SSIM) is a method for predicting the perceived quality of digital television and cinematic pictures, as well as other kinds of digital images and videos. It is also used for measuring the similarity between two images.

  3. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    A similarity measure can take many different forms depending on the type of data being clustered and the specific problem being solved. One of the most commonly used similarity measures is the Euclidean distance , which is used in many clustering techniques including K-means clustering and Hierarchical clustering .

  4. Normalized compression distance - Wikipedia

    en.wikipedia.org/wiki/Normalized_compression...

    Normalized compression distance (NCD) is a way of measuring the similarity between two objects, be it two documents, two letters, two emails, two music scores, two languages, two programs, two pictures, two systems, two genomes, to name a few. Such a measurement should not be application dependent or arbitrary.

  5. Sum of absolute differences - Wikipedia

    en.wikipedia.org/wiki/Sum_of_absolute_differences

    These differences are summed to create a simple metric of block similarity, the L 1 norm of the difference image or Manhattan distance between two image blocks. The sum of absolute differences may be used for a variety of purposes, such as object recognition, the generation of disparity maps for stereo images, and motion estimation for video ...

  6. Jaccard index - Wikipedia

    en.wikipedia.org/wiki/Jaccard_index

    In this scenario, the similarity between the two baskets as measured by the Jaccard index would be 1/3, but the similarity becomes 0.998 using the SMC. In other contexts, where 0 and 1 carry equivalent information (symmetry), the SMC is a better measure of similarity.

  7. Semantic similarity - Wikipedia

    en.wikipedia.org/wiki/Semantic_similarity

    Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of ...

  8. Similarity learning - Wikipedia

    en.wikipedia.org/wiki/Similarity_learning

    Similarity learning is closely related to distance metric learning.Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality).

  9. Content similarity detection - Wikipedia

    en.wikipedia.org/wiki/Content_similarity_detection

    Documents are represented as one or multiple vectors, e.g. for different document parts, which are used for pair wise similarity computations. Similarity computation may then rely on the traditional cosine similarity measure, or on more sophisticated similarity measures. [23] [24] [25]