Search results
Results From The WOW.Com Content Network
Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance. The sound localization mechanisms of the mammalian auditory system have been extensively studied. The auditory system uses several cues for sound source localization, including time difference and level difference (or ...
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
A general way to implement 3d sound localization is to use the HRTF(Head-related transfer function). First, compute HRTFs for the 3D sound localization, by formulating two equations; one represents the signal of a given sound source and the other indicates the signal output from the robot head microphones for the sound transferred from the source.
The central nucleus of the IC is a nearly obligatory relay in the ascending auditory system, and most likely acts to integrate information (specifically regarding sound source localization from the superior olivary complex [13] and dorsal cochlear nucleus) before sending it to the thalamus and cortex. [1]
The right hemisphere is more specialized for sound localization, [13] while auditory space representation in the brain requires the integration of information from both hemispheres. [14] The corpus callosum (CC) is the major route of communication between the two hemispheres. At maturity it is a large mass of white matter and consists of ...
ITD occurs whenever the distance from the source of sound to the two ears is different, resulting in differences in the arrival times of the sound at the two ears. When the sound source is directly in front of the owl, there is no ITD, i.e. the ITD is zero. In sound localization, ITDs are used as cues for location in the azimuth.
This fade over was overlaid by many wall reflections from the sound situation before. Obviously no sound source localization was possible during this phase. At the end, when only loudspeaker 2 emitted sound, the situation was quite similar, the sound of the wall reflections, which arrived simultaneously, prevented a localization of this sound ...
The precedence effect or law of the first wavefront is a binaural psychoacoustical effect concerning sound reflection and the perception of echoes.When two versions of the same sound presented are separated by a sufficiently short time delay (below the listener's echo threshold), listeners perceive a single auditory event; its perceived spatial location is dominated by the location of the ...