Search results
Results From The WOW.Com Content Network
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency ...
Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.
Unlike in the case of estimating the population mean of a normal distribution, for which the sample mean is a simple estimator with many desirable properties (unbiased, efficient, maximum likelihood), there is no single estimator for the standard deviation with all these properties, and unbiased estimation of standard deviation is a very ...
the standard deviation of the mean itself (¯, which is the standard error), and; the estimator of the standard deviation of the mean (^ ¯, which is the most often calculated quantity, and is also often colloquially called the standard error).
However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation. Further, for other distributions the sample mean and sample variance are not in general MVUEs – for a uniform distribution with unknown upper and lower bounds, the mid-range is the MVUE for the ...
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.
An estimator can be unbiased but not consistent. For example, for an iid sample {x 1,..., x n} one can use T n (X) = x n as the estimator of the mean E[X]. Note that here the sampling distribution of T n is the same as the underlying distribution (for any n, as it ignores all points but the last), so E[T