Search results
Results From The WOW.Com Content Network
Inhibitory control, also known as response inhibition, is a cognitive process – and, more specifically, an executive function – that permits an individual to inhibit their impulses and natural, habitual, or dominant behavioral responses to stimuli (a.k.a. prepotent responses) in order to select a more appropriate behavior that is consistent with completing their goals.
the effect of the inhibitor is a result of the percent of the enzyme population interacting with inhibitor. The only problem with this equation in its present form is that it assumes absolute inhibition of the enzyme with inhibitor binding, when in fact there can be a wide range of effects anywhere from 100% inhibition of substrate turn over to ...
However, under substrate inhibiting effects where two of the same substrate molecules bind to the active sites and inhibitory sites, the reaction rate will reach a peak value before decreasing. The reaction rate will either decrease to zero under complete inhibition, or it will decrease to a non-zero asymptote during partial inhibition. [ 3 ]
An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential. [1] The opposite of an inhibitory postsynaptic potential is an excitatory postsynaptic potential (EPSP), which is a synaptic potential that makes a postsynaptic neuron more likely to generate an action potential.
At the same time, GABA is the most common neurotransmitter associated with IPSPs in the brain. However, classifying neurotransmitters as such is technically incorrect, as there are several other synaptic factors that help determine a neurotransmitter's excitatory or inhibitory effects.
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
This causes an inhibitory effect on neurotransmission by diminishing the chance of a successful action potential occurring at the postsynaptic cell. The reversal potential of the GABA A-mediated inhibitory postsynaptic potential (IPSP) in normal solution is −70 mV, contrasting the GABA B IPSP (−100 mV).
The Golgi tendon reflex [1] (also called inverse stretch reflex, autogenic inhibition, [2] tendon reflex [3]) is an inhibitory effect on the muscle resulting from the muscle tension stimulating Golgi tendon organs (GTO) of the muscle, and hence it is self-induced.