When.com Web Search

  1. Ad

    related to: boltzmann constant in wavenumbers value example

Search results

  1. Results From The WOW.Com Content Network
  2. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1. The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).

  3. kT (energy) - Wikipedia

    en.wikipedia.org/wiki/KT_(energy)

    kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on ⁠ E ...

  4. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum. Wavenumber can be used to specify quantities other than spatial frequency. For example, in optical spectroscopy, it is often used as a unit of temporal frequency assuming a certain speed of light.

  5. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).

  6. Vibrational partition function - Wikipedia

    en.wikipedia.org/wiki/Vibrational_partition_function

    A quantum harmonic oscillator has an energy spectrum characterized by: , = (+) where j runs over vibrational modes and is the vibrational quantum number in the jth mode, is the Planck constant, h, divided by and is the angular frequency of the jth mode. Using this approximation we can derive a closed form expression for the vibrational ...

  7. Thermodynamic beta - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_beta

    This link is provided by Boltzmann's fundamental assumption written as S = k B ln ⁡ Ω , {\displaystyle S=k_{\rm {B}}\ln \Omega ,} where k B is the Boltzmann constant , S is the classical thermodynamic entropy, and Ω is the number of microstates.

  8. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The constant of proportionality, , is called the Stefan–Boltzmann constant. It has the value It has the value σ = 5.670 374 419 ... × 10 −8 W⋅m −2 ⋅K −4 .

  9. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.