Search results
Results From The WOW.Com Content Network
However, the original scheme was proved in the random oracle model to be IND-CCA2 secure when OAEP is used with the RSA permutation using standard encryption exponents, as in the case of RSA-OAEP. [2] An improved scheme (called OAEP+) that works with any trapdoor one-way permutation was offered by Victor Shoup to solve this problem. [3]
Many padding schemes are based on appending predictable data to the final block. For example, the pad could be derived from the total length of the message. This kind of padding scheme is commonly applied to hash algorithms that use the Merkle–Damgård construction such as MD-5, SHA-1, and SHA-2 family such as SHA-224, SHA-256, SHA-384, SHA ...
Mask generation functions, as generalizations of hash functions, are useful wherever hash functions are. However, use of a MGF is desirable in cases where a fixed-size hash would be inadequate. Examples include generating padding, producing one-time pads or keystreams in symmetric-key encryption, and yielding outputs for pseudorandom number ...
As mentioned in the introduction, the padding scheme used in the Merkle–Damgård construction must be chosen carefully to ensure the security of the scheme. Mihir Bellare gives sufficient conditions for a padding scheme to possess to ensure that the MD construction is secure: it suffices that the scheme be "MD-compliant" (the original length ...
However, the vulnerable padding scheme remains in use and has resulted in subsequent attacks: Bardou et al. (2012) find that several models of PKCS 11 tokens still use the v1.5 padding scheme for RSA. They propose an improved version of Bleichenbacher's attack that requires fewer messages.
PyCrypto – The Python Cryptography Toolkit PyCrypto, extended in PyCryptoDome; keyczar – Cryptography Toolkit keyczar; M2Crypto – M2Crypto is the most complete OpenSSL wrapper for Python. Cryptography – Python library which exposes cryptographic recipes and primitives. PyNaCl – Python binding for libSodium (NaCl)
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
There are some Public Key encryption schemes that allow keyword search, [1] [2] [3] however these schemes all require search time linear in the database size. If the database entries were encrypted with a deterministic scheme and sorted, then a specific field of the database could be retrieved in logarithmic time.