Search results
Results From The WOW.Com Content Network
Conway and Kochen, The Strong Free Will Theorem, published in Notices of the AMS. Volume 56, Number 2, February 2009. Rehmeyer, Julie (August 15, 2008). "Do Subatomic Particles Have Free Will?". Science News. Introduction to the Free Will Theorem, videos of six lectures given by J. H. Conway, Mar. 2009. Wüthrich, Christian (September 2011).
The free will theorem says that if we have free will, then particles must have free will. This presumably is counterintuitive. It makes no claim about a world in which we don't have free will (a deterministic world). There's no way to argue for free will on the basis of this theorem - and yet, this is what the section claims, without any ...
A linear group is not amenable if and only if it contains a non-abelian free group (thus the von Neumann conjecture, while not true in general, holds for linear groups). The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result ...
On that basis "...free will cannot be squeezed into time frames of 150–350 ms; free will is a longer term phenomenon" and free will is a higher level activity that "cannot be captured in a description of neural activity or of muscle activation..." [185] The bearing of timing experiments upon free will is still under discussion.
In the 1980s, John Stewart Bell discussed superdeterminism in a BBC interview: [7] [8] There is a way to escape the inference of superluminal speeds and spooky action at a distance. But it involves absolute determinism in the universe, the complete absence of free will. Suppose the world is super-deterministic, with not just inanimate nature ...
They are called the strong law of large numbers and the weak law of large numbers. [16] [1] Stated for the case where X 1, X 2, ... is an infinite sequence of independent and identically distributed (i.i.d.) Lebesgue integrable random variables with expected value E(X 1) = E(X 2) = ... = μ, both versions of the law state that the sample average
The strong exponential time hypothesis implies that it is not possible to find -vertex dominating sets more quickly than in time (). [ 8 ] The exponential time hypothesis implies also that the weighted feedback arc set problem on tournaments does not have a parametrized algorithm with running time O ( 2 o ( OPT ) n O ( 1 ) ) {\textstyle O(2^{o ...
Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of ...