Search results
Results From The WOW.Com Content Network
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
For three variables, ... Cramer's rule is an explicit formula for the solution of a system of linear equations, ... This leads to the class of iterative methods.
Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.
Sieverts's law, in physical metallurgy, is a rule to predict the solubility of gases in metals. Named after German chemist Adolf Sieverts (1874–1947). Smeed's law is an empirical rule relating traffic fatalities to traffic congestion as measured by the proxy of motor vehicle registrations and country population. After R. J. Smeed.
A system of linear equations with n variables and coefficients in a field K has a solution if and only if its coefficient matrix A and its augmented matrix [A|b] have the same rank. [1] If there are solutions, they form an affine subspace of of dimension n − rank(A). In particular: if n = rank(A), the solution is unique,
The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle. [1]
The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).
Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable; Cramér's theorem (large deviations), a fundamental result in the theory of large deviations; Cramer's theorem (algebraic curves), a result regarding the necessary number of points to determine a curve