Search results
Results From The WOW.Com Content Network
In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity.
An essential feature is the exploitation in some part of the algorithms of features derived from the mathematical model of the problems of interest, thus the definition "model-based heuristics" appearing in the title of some events of the conference series dedicated to matheuristics matheuristics web page.
This algorithm is a member of the ant colony algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis, [ 6 ] [ 7 ] the first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path ...
In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover" [1]) is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution in a search space.
Gigerenzer & Gaissmaier (2011) state that sub-sets of strategy include heuristics, regression analysis, and Bayesian inference. [14]A heuristic is a strategy that ignores part of the information, with the goal of making decisions more quickly, frugally, and/or accurately than more complex methods (Gigerenzer and Gaissmaier [2011], p. 454; see also Todd et al. [2012], p. 7).
An EA is a metaheuristic that reproduces the basic principles of biological evolution as a computer algorithm in order to solve challenging optimization or planning tasks, at least approximately. An MA uses one or more suitable heuristics or local search techniques to improve the quality of solutions generated by the EA and to speed up the search.
Besides (finitely terminating) algorithms and (convergent) iterative methods, there are heuristics. A heuristic is any algorithm which is not guaranteed (mathematically) to find the solution, but which is nevertheless useful in certain practical situations. List of some well-known heuristics:
The ant colony optimization algorithm is a probabilistic technique for solving computational problems that can be reduced to finding good paths through graphs.Initially proposed by Marco Dorigo in 1992 in his PhD thesis, [1] [2] the first algorithm aimed to search for an optimal path in a graph based on the behavior of ants seeking a path between their colony and a source of food.