Ad
related to: bicarbonate carbonic acid buffer system examples
Search results
Results From The WOW.Com Content Network
The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3), bicarbonate ion (HCO − 3 ), and carbon dioxide (CO 2 ) in order to maintain pH in the blood and duodenum , among other tissues, to support proper metabolic function. [ 1 ]
Hydroxide ions, for example, when added to the solution, will react with free hydrogen ions and increase the pH of the solution. Additionally, hydroxide ions will abstract protons from carbonic acid in solution, causing the bicarbonate concentration to increase. The new position on the diagram following addition of hydroxide ions no longer lies ...
With carbonic acid as the central intermediate species, bicarbonate – in conjunction with water, hydrogen ions, and carbon dioxide – forms this buffering system, which is maintained at the volatile equilibrium [3] required to provide prompt resistance to pH changes in both the acidic and basic directions.
These buffers include the bicarbonate buffer system, the phosphate buffer system, and the protein buffer system. [7] Respiratory component: The second line of defense is rapid consisting of the control the carbonic acid (H 2 CO 3) concentration in the ECF by changing the rate and depth of breathing by hyperventilation or hypoventilation.
The pH of a solution containing a buffering agent can only vary within a narrow range, regardless of what else may be present in the solution. In biological systems this is an essential condition for enzymes to function correctly. For example, in human blood a mixture of carbonic acid (H 2 CO 3) and bicarbonate (HCO −
Most carbonic acid then dissociates to bicarbonate and hydrogen ions. One of the buffer systems present in the body is the blood plasma buffering system. This is formed from , carbonic acid, working in conjunction with [HCO − 3], bicarbonate, to form the bicarbonate system. [10]
The bicarbonate buffer system regulates the ratio of carbonic acid to bicarbonate to be equal to 1:20, at which ratio the blood pH is 7.4 (as explained in the Henderson–Hasselbalch equation). A change in the plasma pH gives an acid–base imbalance. In acid–base homeostasis there are two mechanisms that can help regulate the pH.
For example, bicarbonate (HCO 3 −) does not have a transporter, so its reabsorption involves a series of reactions in the tubule lumen and tubular epithelium. It begins with the active secretion of a hydrogen ion (H +) into the tubule fluid via a Na/H exchanger: In the lumen The H + combines with HCO 3 − to form carbonic acid (H 2 CO 3)