When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra predator-prey model makes a number of assumptions about the environment and biology of the predator and prey populations: [5] The prey population finds ample food at all times. The food supply of the predator population depends entirely on the size of the prey population.

  3. Arditi–Ginzburg equations - Wikipedia

    en.wikipedia.org/wiki/Arditi–Ginzburg_equations

    Because the number of prey harvested by each predator decreases as predators become more dense, ratio-dependent predation is a way of incorporating predator intraspecific competition for food. Ratio-dependent predation may account for heterogeneity in large-scale natural systems in which predator efficiency decreases when prey is scarce. [1]

  4. Population dynamics of fisheries - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics_of...

    The model assumes that predators search for prey at random, and that both predators and prey are assumed to be distributed in a non-contiguous ("clumped") fashion in the environment. [ 30 ] In the late 1980s, a credible, simple alternative to the Lotka–Volterra predator-prey model (and its common prey dependent generalizations) emerged, the ...

  5. Huffaker's mite experiment - Wikipedia

    en.wikipedia.org/wiki/Huffaker's_mite_experiment

    The Lotka–Volterra predatorprey model describes the basic population dynamics under predation. The solution to these equations in the simple one-predator species, one-prey species model is a stable linked oscillation of population levels for both predator and prey.

  6. Optimal foraging theory - Wikipedia

    en.wikipedia.org/wiki/Optimal_foraging_theory

    One classical version of the optimal foraging theory is the optimal diet model, which is also known as the prey choice model or the contingency model. In this model, the predator encounters different prey items and decides whether to eat what it has or search for a more profitable prey item. The model predicts that foragers should ignore low ...

  7. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...

  8. Metapopulation - Wikipedia

    en.wikipedia.org/wiki/Metapopulation

    When the prey would become extinct locally at one habitat patch, they were able to reestablish by migrating to new patches before being attacked by predators. This habitat spatial structure of patches allowed for coexistence between the predator and prey species and promoted a stable population oscillation model. [6]

  9. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    The rate at which a population increases in size if there are no density-dependent forces regulating the population is known as the intrinsic rate of increase.It is = where the derivative / is the rate of increase of the population, N is the population size, and r is the intrinsic rate of increase.