Search results
Results From The WOW.Com Content Network
Cobweb plot of the Gauss map for = and =. This shows an 8-cycle. This shows an 8-cycle. In mathematics , the Gauss map (also known as Gaussian map [ 1 ] or mouse map ), is a nonlinear iterated map of the reals into a real interval given by the Gaussian function :
Graph of tent map function Example of iterating the initial condition x 0 = 0.4 over the tent map with μ = 1.9. In mathematics, the tent map with parameter μ is the real-valued function f μ defined by ():= {,}, the name being due to the tent-like shape of the graph of f μ.
An RR tachograph is a graph of the numerical value of the RR-interval versus time. In the context of RR tachography, a Poincaré plot is a graph of RR(n) on the x-axis versus RR(n + 1) (the succeeding RR interval) on the y-axis, i.e. one takes a sequence of intervals and plots each interval against the following interval. [3]
Given a scale or ruler, graphs can also be used to read off the value of an unknown variable plotted as a function of a known one, but this can also be done with data presented in tabular form. Graphs of functions are used in mathematics , sciences , engineering , technology , finance , and other areas.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
An interval graph is an undirected graph G formed from a family of intervals , =,,, … by creating one vertex v i for each interval S i, and connecting two vertices v i and v j by an edge whenever the corresponding two sets have a nonempty intersection.
These differences in the frequency of the points are due to the shape of the graph of the logistic map. The top of the graph, near r/4, attracts orbits with high frequency, and the area near f(r/4) that is mapped from there also becomes highly frequent, and the area near (/) that is mapped from there also becomes highly frequent, and so on. The ...