Search results
Results From The WOW.Com Content Network
In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.
The Levi graph of the Desargues configuration, a graph having one vertex for each point or line in the configuration, is known as the Desargues graph. Because of the symmetries and self-duality of the Desargues configuration, the Desargues graph is a symmetric graph. [1] The Petersen graph, in the layout shown by Kempe (1886)
In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i . The square of the distance from a point p to one of the lines is given from Pythagoras:
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
Three or more collinear points, where the circumcircles are of infinite radii. Four or more points on a perfect circle, where the triangulation is ambiguous and all circumcenters are trivially identical. In this case the Voronoi diagram contains vertices of degree four or greater and its dual graph contains polygonal faces with four or more sides.
A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be ...
Consider the first case, with points = (,,) and = (,,). The vector displacement from x to y is nonzero because the points are distinct, and represents the direction of the line. That is, every displacement between points on the line L is a scalar multiple of d = y – x.
An early graphing calculator was designed in 1921 by electrical engineer Edith Clarke. [1] [2] [3] The calculator was used to solve problems with electrical power line transmission. [4] Casio produced the first commercially available graphing calculator in 1985. Sharp produced its first graphing calculator in 1986, with Hewlett Packard ...