Search results
Results From The WOW.Com Content Network
In the figure, Excel is used to find the smallest root of the quadratic equation x 2 + bx + c = 0 for c = 4 and c = 4 × 10 5. The difference between direct evaluation using the quadratic formula and the approximation described above for widely spaced roots is plotted vs. b.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
Al-Khwārizmī's method of solving linear and quadratic equations worked by first reducing the equation to one of six standard forms (where b and c are positive integers) squares equal roots (ax 2 = bx) squares equal number (ax 2 = c) roots equal number (bx = c) squares and roots equal number (ax 2 + bx = c) squares and number equal roots (ax 2 ...
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
A Bézier curve is defined by a set of control points P 0 through P n, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.
A univariate quadratic function can be expressed in three formats: [2] = + + is called the standard form, = () is called the factored form, where r 1 and r 2 are the roots of the quadratic function and the solutions of the corresponding quadratic equation.
For such a function, a smooth quadratic interpolant like the one used in Simpson's rule will give good results. However, it is often the case that the function we are trying to integrate is not smooth over the interval. Typically, this means that either the function is highly oscillatory or lacks derivatives at certain points.
Finding the root of a linear polynomial (degree one) is easy and needs only one division: the general equation + = has solution = /. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability.