Search results
Results From The WOW.Com Content Network
In blue, the point (4, 210°). In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian coordinate system) is called the pole, and the ...
Drag curve. The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.
In algebraic geometry, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n −1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the ...
For any given value of lift, the AoA varies with speed. Graphs of C L and C D vs. speed are referred to as drag curves. Speed is shown increasing from left to right. The lift/drag ratio is given by the slope from the origin to some point on the curve and so the maximum L/D ratio does not occur at the point of least drag coefficient, the ...
Pole and polar. The polar line q to a point Q with respect to a circle of radius r centered on the point O. The point P is the inversion point of Q; the polar is the line through P that is perpendicular to the line containing O, P and Q. In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship ...
A vector v (red) represented by • a vector basis (yellow, left: e 1, e 2, e 3), tangent vectors to coordinate curves (black) and • a covector basis or cobasis (blue, right: e 1, e 2, e 3), normal vectors to coordinate surfaces (grey) in general (not necessarily orthogonal) curvilinear coordinates (q 1, q 2, q 3). The basis and cobasis do ...
The pedal curve of a parabola with respect to its vertex is a cissoid of Diocles. [3] The geometrical properties of pedal curves in general produce several alternate methods of constructing the cissoid. It is the envelopes of circles whose centers lie on a parabola and which pass through the vertex of the parabola.
At each position S, unit vector u n points along the outward normal to the curve and unit vector u t is tangential to the path. The radius of curvature of the path is ρ as found from the rate of rotation of the tangent to the curve with respect to arc length, and is the radius of the osculating circle at position S.