Search results
Results From The WOW.Com Content Network
In mathematics, a binary relation on a set is reflexive if it relates every element of to itself. [1][2] An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity.
The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 but not 5 ≥ 7. The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. For example, the natural numbers 2 and 6 have a common factor greater than 1 ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values ...
Binary relations, and especially homogeneous relations, are used in many branches of mathematics to model a wide variety of concepts. These include, among others: the "is greater than", "is equal to", and "divides" relations in arithmetic; the "is congruent to" relation in geometry; the "is adjacent to" relation in graph theory;
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
In mathematics, the reflexive closure of a binary relation on a set is the smallest reflexive relation on that contains A relation is called reflexive if it relates every element of to itself. For example, if is a set of distinct numbers and means " is less than ", then the reflexive closure of is the relation " is less than or equal to ".
The usual order relation on the real numbers is antisymmetric: if for two real numbers and both inequalities and hold, then and must be equal. Similarly, the subset order on the subsets of any given set is antisymmetric: given two sets and if every element in also is in and every element in is also in then and must contain all the same elements ...
A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] and loset [6] [7] are also used. The term chain is sometimes defined as a synonym of totally ordered set , [ 5 ] but generally refers to a totally ordered subset of a given partially ordered set.