Search results
Results From The WOW.Com Content Network
Competitive inhibition can be overcome by adding more substrate to the reaction, which increases the chances of the enzyme and substrate binding. As a result, competitive inhibition alters only the K m, leaving the V max the same. [3] This can be demonstrated using enzyme kinetics plots such as the Michaelis–Menten or the Lineweaver-Burk plot.
Effects of different types of inhibition on the double-reciprocal plot. When used for determining the type of enzyme inhibition, the Lineweaver–Burk plot can distinguish between competitive, pure non-competitive and uncompetitive inhibitors. The various modes of inhibition can be compared to the uninhibited reaction.
The plot of against has often been called a "Michaelis–Menten plot", even recently, [7] [8] [9] but this is misleading, because Michaelis and Menten did not use such a plot. Instead, they plotted v {\displaystyle v} against log a {\displaystyle \log a} , which has some advantages over the usual ways of plotting Michaelis–Menten data.
Two equations listed below that are referred to as non-competitive substrate inhibition and competitive substrate inhibition models respectively by Shuler and Michael in Bioprocess Engineering: Basic Concepts. Note that the Haldane equation above is a special case of the following non-competitive substrate inhibition model, where KI >>Ks. [1]
The plot is occasionally attributed to Augustinsson [5] and referred to the Woolf–Augustinsson–Hofstee plot [6] [7] [8] or simply the Augustinsson plot. [9] However, although Haldane, Woolf or Eadie were not explicitly cited when Augustinsson introduced the versus / equation, both the work of Haldane [10] and of Eadie [3] are cited at other places of his work and are listed in his ...
On a Lineweaver-Burk plot, the presence of a noncompetitive inhibitor is illustrated by a change in the y-intercept, defined as 1/V max. The x-intercept, defined as −1/K M, will remain the same. In competitive inhibition, the inhibitor will bind to an enzyme at the active site, competing with the substrate.
When a non-competitive inhibitor is added the Vmax is changed, while the Km remains unchanged. According to the Lineweaver-Burk plot the Vmax is reduced during the addition of a non-competitive inhibitor, which is shown in the plot by a change in both the slope and y-intercept when a non-competitive inhibitor is added. [8]
Enzyme inhibition can refer to the inhibition of the expression of the enzyme by another molecule; interference at the enzyme-level, basically with how the enzyme works. This can be competitive inhibition, uncompetitive inhibition, non-competitive inhibition or partially competitive inhibition.