Search results
Results From The WOW.Com Content Network
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.
Independent increments are a basic property of many stochastic processes and are often incorporated in their definition. The notion of independent increments and independent S-increments of random measures plays an important role in the characterization of Poisson point process and infinite divisibility.
If the distributions are defined in terms of the probability density functions (pdfs), then two pdfs should be considered distinct only if they differ on a set of non-zero measure (for example two functions ƒ 1 (x) = 1 0 ≤ x < 1 and ƒ 2 (x) = 1 0 ≤ x ≤ 1 differ only at a single point x = 1 — a set of measure zero — and thus cannot ...
To give an example from mathematics, consider an expression which defines a function = [(, …,)] where t is an expression. t may contain some, all or none of the x 1, …, x n and it may contain other variables. In this case we say that function definition binds the variables x 1, …, x n.
It states that whenever , …, are algebraic numbers that are linearly independent over , then , …, are also algebraically independent over . A stronger tool is the currently unproven Schanuel conjecture , which, if proven, would establish the algebraic independence of many numbers including π and e .