When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  3. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  4. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  5. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. [1] Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent.

  6. Independent increments - Wikipedia

    en.wikipedia.org/wiki/Independent_increments

    Independent increments are a basic property of many stochastic processes and are often incorporated in their definition. The notion of independent increments and independent S-increments of random measures plays an important role in the characterization of Poisson point process and infinite divisibility.

  7. Identifiability - Wikipedia

    en.wikipedia.org/wiki/Identifiability

    If the distributions are defined in terms of the probability density functions (pdfs), then two pdfs should be considered distinct only if they differ on a set of non-zero measure (for example two functions ƒ 1 (x) = 1 0 ≤ x < 1 and ƒ 2 (x) = 1 0 ≤ x ≤ 1 differ only at a single point x = 1 — a set of measure zero — and thus cannot ...

  8. Free variables and bound variables - Wikipedia

    en.wikipedia.org/wiki/Free_variables_and_bound...

    To give an example from mathematics, consider an expression which defines a function = [(, …,)] where t is an expression. t may contain some, all or none of the x 1, …, x n and it may contain other variables. In this case we say that function definition binds the variables x 1, …, x n.

  9. Algebraic independence - Wikipedia

    en.wikipedia.org/wiki/Algebraic_independence

    It states that whenever , …, are algebraic numbers that are linearly independent over , then , …, are also algebraically independent over . A stronger tool is the currently unproven Schanuel conjecture , which, if proven, would establish the algebraic independence of many numbers including π and e .