Ads
related to: class 9 polynomials solutions cue problems
Search results
Results From The WOW.Com Content Network
Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem with couples; Knot genus [38] Latin square completion (the problem of determining if a partially filled square can be completed)
This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.
A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do. The set of NP-complete problems is often denoted by NP-C or NPC. Although a solution to an NP-complete problem can be verified "quickly ...
It is easy to see that the complexity class P (all problems solvable, deterministically, in polynomial time) is contained in NP (problems where solutions can be verified in polynomial time), because if a problem is solvable in polynomial time, then a solution is also verifiable in polynomial time by simply solving the problem.
A solution of a polynomial system is a tuple of values of (x 1, ..., x m) that satisfies all equations of the polynomial system. The solutions are sought in the complex numbers, or more generally in an algebraically closed field containing the coefficients. In particular, in characteristic zero, all complex solutions are sought. Searching for ...
In this theory, the class P consists of all decision problems (defined below) solvable on a deterministic sequential machine in a duration polynomial in the size of the input; the class NP consists of all decision problems whose positive solutions are verifiable in polynomial time given the right information, or equivalently, whose solution can ...
A variation of the polynomial method, often called polynomial partitioning, was introduced by Guth and Katz in their solution to the Erdős distinct distances problem. [4] Polynomial partitioning involves using polynomials to divide the underlying space into regions and arguing about the geometric structure of the partition.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...