When.com Web Search

  1. Ads

    related to: calculate the charge on capacitor c1 and j k is 5

Search results

  1. Results From The WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The energy (measured in joules) stored in a capacitor is equal to the work required to push the charges into the capacitor, i.e. to charge it. Consider a capacitor of capacitance C , holding a charge + q on one plate and − q on the other.

  3. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    Common tolerances are ±5%, ±10%, and ±20%, denotes as J, K, and M, respectively. A capacitor may also be labeled with its working voltage, temperature, and other relevant characteristics. Example: A capacitor labeled or designated as 473K 330V has a capacitance of 47 × 10 3 pF = 47 nF (±10%) with a maximum working voltage of 330 V. The ...

  4. Ćuk converter - Wikipedia

    en.wikipedia.org/wiki/Ćuk_converter

    The diode and the switch are simplified as either a short circuit when they are on or by an open circuit when they are off. When in the off-state, the capacitor C is charged by the input source through the inductor L 1. When in the on-state, the capacitor C transfers the energy to the output capacitor through the inductance L 2.

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The total energy stored in a few-charge capacitor is = which is obtained by a method of charge assembly utilizing the smallest physical charge increment = where is the elementary unit of charge and = where is the total number of charges in the capacitor.

  7. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  8. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    So the capacitor will be charged to about 63.2% after τ, and essentially fully charged (99.3%) after about 5τ. When the voltage source is replaced with a short circuit, with the capacitor fully charged, the voltage across the capacitor drops exponentially with t from V towards 0.

  9. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions.