Ad
related to: list five conductors and insulators
Search results
Results From The WOW.Com Content Network
where is the length of the conductor, measured in metres [m], A is the cross-section area of the conductor measured in square metres [m 2], σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω·m ...
The insulator has a groove near the top just below the crown. The conductor passes through this groove and is tied to the insulator with annealed wire of the same material as the conductor. Pin-type insulators are used for transmission and distribution of communication signals, and electric power at voltages up to 33 kV.
Pages in category "Electrical conductors" The following 13 pages are in this category, out of 13 total. This list may not reflect recent changes. ...
where is the length of the conductor, measured in metres (m), A is the cross-sectional area of the conductor measured in square metres (m 2), σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω ...
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field.When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they ...
A topological insulator is an insulator for the same reason a "trivial" (ordinary) insulator is: there exists an energy gap between the valence and conduction bands of the material. But in a topological insulator, these bands are, in an informal sense, "twisted", relative to a trivial insulator. [4]
This kind of insulator can become a conductor by changing some parameters, which may be composition, pressure, strain, voltage, or magnetic field. The effect is known as a Mott transition and can be used to build smaller field-effect transistors , switches and memory devices than possible with conventional materials.