Search results
Results From The WOW.Com Content Network
The term monotonic transformation (or monotone transformation) may also cause confusion because it refers to a transformation by a strictly increasing function. This is the case in economics with respect to the ordinal properties of a utility function being preserved across a monotonic transform (see also monotone preferences ). [ 5 ]
The Milnor–Thurston kneading theory is a mathematical theory which analyzes the iterates of piecewise monotone mappings of an interval into itself. The emphasis is on understanding the properties of the mapping that are invariant under topological conjugacy.
[4] [5] Another related concept is that of a completely/absolutely monotonic sequence. This notion was introduced by Hausdorff in 1921. This notion was introduced by Hausdorff in 1921. The notions of completely and absolutely monotone function/sequence play an important role in several areas of mathematics.
Then F and G form a monotone Galois connection between the power set of X and the power set of Y, both ordered by inclusion ⊆. There is a further adjoint pair in this situation: for a subset M of X, define H(M) = {y ∈ Y | f −1 {y} ⊆ M}. Then G and H form a monotone Galois connection between the power set of Y and the power set of X.
In mathematics, the concept of a residuated mapping arises in the theory of partially ordered sets. It refines the concept of a monotone function . If A , B are posets , a function f : A → B is defined to be monotone if it is order-preserving: that is, if x ≤ y implies f ( x ) ≤ f ( y ).
An effective construction of the set of all superior highly composite numbers is given by the following monotonic mapping from the positive real numbers. [2] Let = ⌊ ⌋ for any prime number p and positive real x.
For instance, the function that maps a natural number to its successor is clearly monotone with respect to the natural order. Any function from a discrete order, i.e. from a set ordered by the identity order "=", is also monotone. Mapping each natural number to the corresponding real number gives an example for an order embedding.
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.