Search results
Results From The WOW.Com Content Network
The muscles of respiration are the muscles that contribute to inhalation and exhalation, by aiding in the expansion and contraction of the thoracic cavity. The diaphragm and, to a lesser extent, the intercostal muscles drive respiration during quiet breathing. The elasticity of these muscles is crucial to the health of the respiratory system ...
These smooth muscle cells have muscarinic M 3 receptors on their membrane. The activation of these receptors by acetylcholine will activate an intracellular G protein, that in turn will activate the phospholipase C pathway, that will end in an increase of intracellular calcium concentrations and therefore contraction of the smooth muscle cell ...
The lungs are not capable of inflating themselves, and will expand only when there is an increase in the volume of the thoracic cavity. [6] [7] In humans, as in the other mammals, this is achieved primarily through the contraction of the diaphragm, but also by the contraction of the intercostal muscles which pull the rib cage upwards and outwards as shown in the diagrams on the right. [8]
Depiction of smooth muscle contraction. Muscle contraction is the activation of tension-generating sites within muscle cells. [1] [2] In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. [1]
Bronchospasm or a bronchial spasm is a sudden constriction of the muscles in the walls of the bronchioles. It is caused by the release (degranulation) of substances from mast cells or basophils under the influence of anaphylatoxins. It causes difficulty in breathing which ranges from mild to severe.
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...
This is accomplished by the contraction of upper airway muscles during inhalation, such as the genioglossus (tongue) and the hyoid muscles. In addition to rhythmic innervation from the respiratory center in the medulla oblongata, the motor neurons controlling the muscles also receive tonic innervation that sets a baseline level of stiffness and ...
Inhalation begins with the contraction of the muscles attached to the rib cage; this causes an expansion in the chest cavity. Then takes place the onset of contraction of the thoracic diaphragm, which results in expansion of the intrapleural space and an increase in negative pressure according to Boyle's law. This negative pressure generates ...