Search results
Results From The WOW.Com Content Network
In linear programming, reduced cost, or opportunity cost, is the amount by which an objective function coefficient would have to improve (so increase for maximization problem, decrease for minimization problem) before it would be possible for a corresponding variable to assume a positive value in the optimal solution.
The cost-minimization problem of the firm is to choose an input bundle (K,L) feasible for the output level y that costs as little as possible. A cost-minimizing input bundle is a point on the isoquant for the given y that is on the lowest possible isocost line. Put differently, a cost-minimizing input bundle must satisfy two conditions:
The central problem of optimization is minimization of functions. ... for example if a minimization problem is ... For example, it is usually required that the cost ...
The minimum-cost flow problem (MCFP) is an optimization and decision problem to find the cheapest possible way of sending a certain amount of flow through a flow network.A typical application of this problem involves finding the best delivery route from a factory to a warehouse where the road network has some capacity and cost associated.
After the problem on variables +, …, is solved, its optimal cost can be used as an upper bound while solving the other problems, In particular, the cost estimate of a solution having x i + 1 , … , x n {\displaystyle x_{i+1},\ldots ,x_{n}} as unassigned variables is added to the cost that derives from the evaluated variables.
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework.
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
Similarly, if the objective function of a minimization problem is a differentiable convex function, the necessary conditions are also sufficient for optimality. It was shown by Martin in 1985 that the broader class of functions in which KKT conditions guarantees global optimality are the so-called Type 1 invex functions .