When.com Web Search

  1. Ad

    related to: gravitational force between two objects on earth

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The second major reason for the difference in gravity at different latitudes is that the Earth's equatorial bulge (itself also caused by centrifugal force from rotation) causes objects at the Equator to be further from the planet's center than objects at the poles. The force due to gravitational attraction between two masses (a piece of the ...

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their distance. In the Einstein field equations , it quantifies the relation between the geometry of spacetime and the energy–momentum tensor (also referred to as the stress ...

  5. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    Since there are two balls, each experiencing force F at a distance ⁠ L / 2 ⁠ from the axis of the balance, the torque due to gravitational force is LF. At equilibrium (when the balance has been stabilized at an angle ), the total amount of torque must be zero as these two sources of torque balance out. Thus, we can equate their magnitudes ...

  6. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    The force of gravity experienced by objects on Earth's surface is the vector sum of two forces: [7] (a) The gravitational attraction in accordance with Newton's universal law of gravitation, and (b) the centrifugal force, which results from the choice of an earthbound, rotating frame of reference.

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...

  8. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For an object of mass the energy required to escape the Earth's gravitational field is GMm / r, a function of the object's mass (where r is radius of the Earth, nominally 6,371 kilometres (3,959 mi), G is the gravitational constant, and M is the mass of the Earth, M = 5.9736 × 10 24 kg).

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    Thus this is a version of the equivalence principle that applies to objects that exert a gravitational force on themselves, such as stars, planets, black holes or Cavendish experiments. It requires that the gravitational constant be the same everywhere in the universe [14]: 49 and is incompatible with a fifth force. It is much more restrictive ...