Search results
Results From The WOW.Com Content Network
Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (,,) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces , the ellipsoidal coordinate system is based on confocal quadrics .
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables.
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci.
While the mean Earth ellipsoid is the ideal basis of global geodesy, for regional networks a so-called reference ellipsoid may be the better choice. [1] When geodetic measurements have to be computed on a mathematical reference surface, this surface should have a similar curvature as the regional geoid; otherwise, reduction of the measurements ...
(In most applications in geodesy, the ellipsoid is taken to be oblate, a > b; however, the theory applies without change to prolate ellipsoids, a < b, in which case f, e 2, and e′ 2 are negative.) Let an elementary segment of a path on the ellipsoid have length ds. From Figs. 2 and 3, we see that if its azimuth is α, then ds is related to ...
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
Well-known examples of curvilinear coordinate systems in three-dimensional Euclidean space (R 3) are cylindrical and spherical coordinates. A Cartesian coordinate surface in this space is a coordinate plane ; for example z = 0 defines the x - y plane.