When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  3. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .

  4. Matrix representation of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation. The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8] Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical ...

  5. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  6. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    Maxwell's equations can be written in tensor form, generally viewed by physicists as a more elegant means of expressing physical laws. The behavior of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or electrodynamics (electromagnetic fields), is governed by Maxwell's equations. In the vector field formalism ...

  7. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    Because of the linearity of Maxwell's equations in a vacuum, solutions can be decomposed into a superposition of sinusoids. This is the basis for the Fourier transform method for the solution of differential equations. The sinusoidal solution to the electromagnetic wave equation takes the form

  8. A Dynamical Theory of the Electromagnetic Field - Wikipedia

    en.wikipedia.org/wiki/A_Dynamical_Theory_of_the...

    Another of Heaviside's four equations is an amalgamation of Maxwell's law of total currents (equation "A") with Ampère's circuital law (equation "C"). This amalgamation, which Maxwell himself had actually originally made at equation (112) in "On Physical Lines of Force", is the one that modifies Ampère's Circuital Law to include Maxwell's ...

  9. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    Heaviside's version (see Maxwell–Faraday equation below) is the form recognized today in the group of equations known as Maxwell's equations. In 1834 Heinrich Lenz formulated the law named after him to describe the "flux through the circuit". Lenz's law gives the direction of the induced emf and current resulting from electromagnetic induction.