When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...

  3. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    For example, squaring the number "1111" yields "1234321", which can be written as "01234321", an 8-digit number being the square of a 4-digit number. This gives "2343" as the "random" number. Repeating this procedure gives "4896" as the next result, and so on. Von Neumann used 10 digit numbers, but the process was the same.

  4. Pseudorandomness - Wikipedia

    en.wikipedia.org/wiki/Pseudorandomness

    Pseudorandom number generator – Algorithm that generates an approximation of a random number sequence; Low-discrepancy sequence – Type of mathematical sequence; Random number generation – Producing a sequence that cannot be predicted better than by random chance; Pseudorandom noise – Pseudo-random signal with characteristics similar to ...

  5. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    However, generally they are considerably slower (typically by a factor 2–10) than fast, non-cryptographic random number generators. These include: Stream ciphers. Popular choices are Salsa20 or ChaCha (often with the number of rounds reduced to 8 for speed), ISAAC, HC-128 and RC4. Block ciphers in counter mode.

  6. Cryptographically secure pseudorandom number generator

    en.wikipedia.org/wiki/Cryptographically_secure...

    In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...

  7. Yarrow algorithm - Wikipedia

    en.wikipedia.org/wiki/Yarrow_algorithm

    The Yarrow algorithm is a family of cryptographic pseudorandom number generators (CSPRNG) devised by John Kelsey, Bruce Schneier, and Niels Ferguson and published in 1999. . The Yarrow algorithm is explicitly unpatented, royalty-free, and open source; no license is required to use

  8. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The 'Extract number' section shows an example where integer 0 has already been output and the index is at integer 1. 'Generate numbers' is run when all integers have been output. For a w -bit word length, the Mersenne Twister generates integers in the range [ 0 , 2 w − 1 ] {\displaystyle [0,2^{w}-1]} .

  9. Fortuna (PRNG) - Wikipedia

    en.wikipedia.org/wiki/Fortuna_(PRNG)

    Fortuna is a cryptographically secure pseudorandom number generator (CS-PRNG) devised by Bruce Schneier and Niels Ferguson and published in 2003. It is named after Fortuna, the Roman goddess of chance.