Search results
Results From The WOW.Com Content Network
Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).
2.1 Low-order polylogarithms. 2.2 Exponential function. 2.3 Trigonometric, inverse trigonometric, hyperbolic, ... Sum of reciprocal of factorials
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
The Basel problem is to determine the sum + + + + + = =.. Euler computed this sum to 20 decimal places with only a few terms of the Euler–Maclaurin formula in 1735. This probably convinced him that the sum equals π 2 / 6 , which he proved in the same year.
The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1. [12]