Search results
Results From The WOW.Com Content Network
[1] [2] [3] For example, if a 1 m 3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m. Electrical conductivity (or specific conductance) is the reciprocal of electrical resistivity. It represents a material's ability to conduct ...
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
The resistance of a given conductor depends on the material it is made of, and on its dimensions. For a given material, the resistance is inversely proportional to the cross-sectional area. [1] For example, a thick copper wire has lower resistance than an otherwise-identical thin copper wire. Also, for a given material, the resistance is ...
The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons (the carriers of ...
Example: A 3-unit long by 1-unit wide (aspect ratio = 3) sheet made of material having a sheet resistance of 21 Ω/sq would measure 63 Ω (since it is composed of three 1-unit by 1-unit squares), if the 1-unit edges were attached to an ohmmeter that made contact entirely over each edge.
If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.
The efficiency by which electricity is converted to heat depends upon on salt, water, and fat content due to their thermal conductivity and resistance factors. [13] In particulate foods, the particles heat up faster than the liquid matrix due to higher resistance to electricity and matching conductivity can contribute to uniform heating. [11]
Contact resistance values are typically small (in the microohm to milliohm range). Contact resistance can cause significant voltage drops and heating in circuits with high current. Because contact resistance adds to the intrinsic resistance of the conductors, it can cause significant measurement errors when exact resistance values are needed.