Search results
Results From The WOW.Com Content Network
In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]
The product of two standard probability spaces is a standard probability space. The same holds for the product of countably many spaces, see (Rokhlin 1952, Sect. 3.4), (Haezendonck 1973, Proposition 12), and (Itô 1984, Theorem 2.4.3). A measurable subset of a standard probability space is a standard probability space.
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...
However, for a given sequence {X n} which converges in distribution to X 0 it is always possible to find a new probability space (Ω, F, P) and random variables {Y n, n = 0, 1, ...} defined on it such that Y n is equal in distribution to X n for each n ≥ 0, and Y n converges to Y 0 almost surely.
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]
In the mathematical theory of probability, the Ionescu-Tulcea theorem, sometimes called the Ionesco Tulcea extension theorem, deals with the existence of probability measures for probabilistic events consisting of a countably infinite number of individual probabilistic events.
Every probability measure on a standard measurable space leads to a standard probability space. The product of a sequence (finite or not) of standard probability spaces is a standard probability space. All non-atomic standard probability spaces are mutually isomorphic mod 0; one of them is the interval (0,1) with the Lebesgue measure.