Ads
related to: breathing problems at high altitude
Search results
Results From The WOW.Com Content Network
The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in atmospheric air over the range in which humans can survive. [1]
Altitude sickness, the mildest form being acute mountain sickness (AMS), is a harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. [ 1 ] [ 2 ] [ 3 ] People's bodies can respond to high altitude in different ways.
High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). [2] HAPE is a severe presentation of altitude sickness .
High altitude breathing apparatus is a breathing apparatus which allows a person to breathe more effectively at an altitude where the partial pressure of oxygen in the ambient atmospheric air is insufficient for the task or to sustain consciousness or human life over the long or short term.
People can become acclimatised to an altitude of 5,200 to 5,500 metres (17,000 to 18,000 ft) if they remain at high altitude for long enough, but for high altitude rescue work, rescue teams must be rapidly deployed, and the time necessary to acclimatise is not available, making oxygen breathing equipment necessary above approximately 3,700 ...
Although pure oxygen pre-breathing is an effective method to protect against altitude DCS, it is logistically complicated and expensive for the protection of civil aviation flyers, either commercial or private. Therefore, it is currently used only by military flight crews and astronauts for protection during high-altitude and space operations.
Failure to acclimatize may result in altitude sickness, including high-altitude pulmonary edema or cerebral edema . [11] [12] Humans have survived for 2 years at 5,950 m (19,520 ft) [475 millibars (14.0 inHg; 6.89 psi) of atmospheric pressure], which appears to be near the limit of the permanently tolerable highest altitude. [13]
This response can be attributed to genetic factors, but the development of the resistance to acute hypoxia is highly affected by when the individual is exposed to high altitude; [20] while genetic factors play an indefinite role in a person's HVR, because long term migrants do not show reduction in their reactions of high altitude even after ...