When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    The Euclidean distance formula is used to find the distance between two points on a plane, which is visualized in the image below. Manhattan distance is commonly used in GPS applications, as it can be used to find the shortest route between two addresses.

  3. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance from (x 0, y 0) to this line is measured along a vertical line segment of length |y 0 - (-c/b)| = |by 0 + c| / |b| in accordance with the formula. Similarly, for vertical lines (b = 0) the distance between the same point and the line is |ax 0 + c| / |a|, as measured along a horizontal line segment.

  4. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  5. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...

  6. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]

  7. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  8. Distance between two parallel lines - Wikipedia

    en.wikipedia.org/wiki/Distance_between_two...

    the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line = /. This distance can be found by first solving the linear systems {= + = /, and {= + = /, to get the coordinates of the intersection points. The solutions to the linear systems are the points

  9. Taxicab geometry - Wikipedia

    en.wikipedia.org/wiki/Taxicab_geometry

    This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length. The taxicab distance is also sometimes known as rectilinear distance or L 1 distance (see L p space). [1]