When.com Web Search

  1. Ad

    related to: why algebra is important

Search results

  1. Results From The WOW.Com Content Network
  2. Algebra - Wikipedia

    en.wikipedia.org/wiki/Algebra

    Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.

  3. History of algebra - Wikipedia

    en.wikipedia.org/wiki/History_of_algebra

    Equally important as the use or lack of symbolism in algebra was the degree of the equations that were addressed. Quadratic equations played an important role in early algebra; and throughout most of history, until the early modern period, all quadratic equations were classified as belonging to one of three categories.

  4. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra, as established by the influence and works of Emmy Noether. [36] Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics.

  5. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    The study of varieties is an important part of universal algebra. An algebraic structure in a variety may be understood as the quotient algebra of term algebra (also called "absolutely free algebra ") divided by the equivalence relations generated by a set of identities.

  6. Abstract algebra - Wikipedia

    en.wikipedia.org/wiki/Abstract_algebra

    In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. [1] Algebraic structures include groups , rings , fields , modules , vector spaces , lattices , and algebras over a field .

  7. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    With respect to general linear maps, linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other part of mathematics.

  8. History of mathematics - Wikipedia

    en.wikipedia.org/wiki/History_of_mathematics

    The high-water mark of Chinese mathematics occurred in the 13th century during the latter half of the Song dynasty (960–1279), with the development of Chinese algebra. The most important text from that period is the Precious Mirror of the Four Elements by Zhu Shijie (1249–1314), dealing with the solution of simultaneous higher order ...

  9. Al-Khwarizmi - Wikipedia

    en.wikipedia.org/wiki/Al-Khwarizmi

    Al-Khwarizmi's algebra is regarded as the foundation and cornerstone of the sciences. In a sense, al-Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because al-Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers. [53]