Ads
related to: power resistors for current flow control
Search results
Results From The WOW.Com Content Network
In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test ...
Various resistor types of different shapes and sizes. A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses.
An inrush current limiter is a device or devices combination used to limit inrush current. Passive resistive components such as resistors (with power dissipation drawback), or negative temperature coefficient (NTC) thermistors are simple options while the positive one (PTC) is used to limit max current afterward as the circuit has been operating (with cool-down time drawback on both).
After some time, current flow heats the thermistor, and its resistance changes to a lower value, allowing current to flow uninterrupted. It is inherently impossible for 100% of supply voltage to appear on the protected circuit, as the thermistor must continue dissipating power (producing heat) in order to maintain a low resistance.
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.