When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.

  3. List of unsolved problems in statistics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Though there are many approximate solutions (such as Welch's t-test), the problem continues to attract attention [4] as one of the classic problems in statistics. Multiple comparisons: There are various ways to adjust p-values to compensate for the simultaneous or sequential testing of hypotheses. Of particular interest is how to simultaneously ...

  4. Z-fighting - Wikipedia

    en.wikipedia.org/wiki/Z-fighting

    It can also vary as the scene or camera is changed, causing one polygon to "win" the z test, then another, and so on. The overall effect is flickering, noisy rasterization of two polygons which "fight" to color the screen pixels. This problem is usually caused by limited sub-pixel precision, floating point and fixed point round-off errors.

  5. Paired difference test - Wikipedia

    en.wikipedia.org/wiki/Paired_difference_test

    Suppose we are using a Z-test to analyze the data, where the variances of the pre-treatment and post-treatment data σ 1 2 and σ 2 2 are known (the situation with a t-test is similar). The unpaired Z-test statistic is ¯ ¯ / + /, The power of the unpaired, one-sided test carried out at level α = 0.05 can be calculated as follows:

  6. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  7. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    For example, if one test is performed at the 5% level and the corresponding null hypothesis is true, there is only a 5% risk of incorrectly rejecting the null hypothesis. However, if 100 tests are each conducted at the 5% level and all corresponding null hypotheses are true, the expected number of incorrect rejections (also known as false ...

  8. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    If the test is performed using the actual population mean and variance, rather than an estimate from a sample, it would be called a one-tailed or two-tailed Z-test. The statistical tables for t and for Z provide critical values for both one- and two-tailed tests. That is, they provide the critical values that cut off an entire region at one or ...

  9. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23