Search results
Results From The WOW.Com Content Network
Stellar parallax is the apparent shift of position of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method .
A parsec is the distance from the Sun to an astronomical object that has a parallax angle of one arcsecond (not to scale). The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to 3.26 light-years or 206,265 astronomical units (AU), i.e. 30.9 trillion kilometres (19.2 trillion miles).
Stellar parallax motion from annual parallax. Half the apex angle is the parallax angle. Parallax is an angle subtended by a line on a point. In the upper diagram, the Earth in its orbit sweeps the parallax angle subtended on the Sun. The lower diagram shows an equal angle swept by the Sun in a geostatic model.
Stellar parallax motion from annual parallax. Half the apex angle is the parallax angle. Parallax is an angle subtended by a line on a point. In the upper diagram, the Earth in its orbit sweeps the parallax angle subtended on the Sun. The lower diagram shows an equal angle swept by the Sun in a geostatic model.
Aberration is distinct from parallax, which is a change in the apparent position of a relatively nearby object, as measured by a moving observer, relative to more distant objects that define a reference frame. The amount of parallax depends on the distance of the object from the observer, whereas aberration does not.
The stellar temperature will determine the rate of ionization of various elements, resulting in characteristic absorption lines in the spectrum. The surface temperature of a star, along with its visual absolute magnitude and absorption features, is used to classify a star (see classification below).
The measurement of stellar parallax of nearby stars provides a fundamental baseline in the cosmic distance ladder that is used to measure the scale of the Universe. Parallax measurements of nearby stars provide an absolute baseline for the properties of more distant stars, as their properties can be compared.
Concept art for the TAU spacecraft, a 1980s era study which would have used an interstellar precursor probe to expand the baseline for calculating stellar parallax in support of Astrometry. The history of astrometry is linked to the history of star catalogues , which gave astronomers reference points for objects in the sky so they could track ...