Search results
Results From The WOW.Com Content Network
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).
While systems of three or four equations can be readily solved by hand (see Cracovian), computers are often used for larger systems. The standard algorithm for solving a system of linear equations is based on Gaussian elimination with some modifications.
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as
Elimination theory, the theory of the methods to eliminate variables between polynomial equations. Disjunctive syllogism, a rule of inference; Gaussian elimination, a method of solving systems of linear equations; Fourier–Motzkin elimination, an algorithm for reducing systems of linear inequalities
LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.
Gaussian elimination for solving systems of linear equations; Gauss's algorithm for Determination of the day of the week; Gauss's method for preliminary orbit ...
In fact, solving the submodule membership problem is what is commonly called solving the system, and solving the syzygy problem is the computation of the null space of the matrix of a system of linear equations. The basic algorithm for both problems is Gaussian elimination.