Ad
related to: intrinsic vs extrinsic chemistry calculator
Search results
Results From The WOW.Com Content Network
In materials science, an intrinsic property is independent of how much of a material is present and is independent of the form of the material, e.g., one large piece or a collection of small particles. Intrinsic properties are dependent mainly on the fundamental chemical composition and structure of the material. [1]
The carrier concentration can be calculated by treating electrons moving back and forth across the bandgap just like the equilibrium of a reversible reaction from chemistry, leading to an electronic mass action law. The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials:
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as Boron and Antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
Intrinsic viscosity [] is a measure of a solute's contribution to the viscosity of a solution.If is the viscosity in the absence of the solute, is (dynamic or kinematic) viscosity of the solution and is the volume fraction of the solute in the solution, then intrinsic viscosity is defined as the dimensionless number [] = It should not be confused with inherent viscosity, which is the ratio of ...
An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor ...
According to International Union of Pure and Applied Chemistry (IUPAC), an intensive property or intensive quantity is one whose magnitude is independent of the size of the system. [3] An intensive property is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation.
In electronics and semiconductor physics, the law of mass action relates the concentrations of free electrons and electron holes under thermal equilibrium.It states that, under thermal equilibrium, the product of the free electron concentration and the free hole concentration is equal to a constant square of intrinsic carrier concentration .
In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may be the case even after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped.