Search results
Results From The WOW.Com Content Network
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
Sallows is an expert on the theory of magic squares [1] and has invented several variations on them, including alphamagic squares [2] [3] and geomagic squares. [4] The latter invention caught the attention of mathematician Peter Cameron who has said that he believes that "an even deeper structure may lie hidden beyond geomagic squares" [5]
Bernard Frénicle de Bessy (c. 1604 – 1674), was a French mathematician born in Paris, who wrote numerous mathematical papers, mainly in number theory and combinatorics.He is best remembered for Des quarrez ou tables magiques, a treatise on magic squares published posthumously in 1693, in which he described all 880 essentially different normal magic squares of order 4.
A geometric magic square, often abbreviated to geomagic square, is a generalization of magic squares invented by Lee Sallows in 2001. [1] A traditional magic square is a square array of numbers (almost always positive integers) whose sum taken in any row, any column, or in either diagonal is the same target number.
On July 6, 1895, Le Siècle 's rival, La France, refined the puzzle so that it was almost a modern Sudoku and named it carré magique diabolique ('diabolical magic square'). It simplified the 9×9 magic square puzzle so that each row, column, and broken diagonals contained only the numbers 1–9, but did not mark the subsquares. Although they ...
Rubik's Magic: Master Edition (most commonly known as Master Magic) was manufactured by Matchbox in 1987. It is a modification from the Rubik's Magic, with 12 tiles instead of the original's 8. The puzzle has 12 panels interconnected with nylon wires in a 2 × 6 rectangular shape, measuring approximately 4.25 inches (10.5 cm) by 13 inches (32 cm).
The puzzle was "invented" by Noyes Palmer Chapman, [16] a postmaster in Canastota, New York, who is said to have shown friends, as early as 1874, a precursor puzzle consisting of 16 numbered blocks that were to be put together in rows of four, each summing to 34 (see magic square).
The Sator Square (or Rotas-Sator Square or Templar Magic Square) is a two-dimensional acrostic class of word square containing a five-word Latin palindrome. [1] The earliest squares were found at Roman-era sites, all in ROTAS-form (where the top line is "ROTAS", not "SATOR"), with the earliest discovery at Pompeii (and also likely pre-AD 62).