When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    We define two hypotheses the null hypothesis, and the alternative hypothesis. If we design the test such that α is the significance level - being the probability of rejecting when is in fact true, then the power of the test is 1 - β where β is the probability of failing to reject when the alternative is true.

  3. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    Starting in the 2010s, some journals began questioning whether significance testing, and particularly using a threshold of α =5%, was being relied on too heavily as the primary measure of validity of a hypothesis. [52] Some journals encouraged authors to do more detailed analysis than just a statistical significance test.

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position (null hypothesis) is incorrect. The procedure ...

  5. Bonferroni correction - Wikipedia

    en.wikipedia.org/wiki/Bonferroni_correction

    Statistical hypothesis testing is based on rejecting the null hypothesis when the likelihood of the observed data would be low if the null hypothesis were true. If multiple hypotheses are tested, the probability of observing a rare event increases, and therefore, the likelihood of incorrectly rejecting a null hypothesis (i.e., making a Type I ...

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  7. Size (statistics) - Wikipedia

    en.wikipedia.org/wiki/Size_(statistics)

    In the case of a composite null hypothesis, the size is the supremum over all data generating processes that satisfy the null hypotheses. [ 1 ] α = sup h ∈ H 0 P ( test rejects H 0 ∣ h ) . {\\displaystyle \\alpha =\\sup _{h\\in H_{0}}P({\\text{test rejects }}H_{0}\\mid h).}

  8. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    The p-value is widely used in statistical hypothesis testing, specifically in null hypothesis significance testing. In this method, before conducting the study, one first chooses a model (the null hypothesis) and the alpha level α (most commonly 0.05).

  9. Uniformly most powerful test - Wikipedia

    en.wikipedia.org/wiki/Uniformly_most_powerful_test

    In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.